A Priori Finite Element Error Analysis for Optimal Control of the Obstacle Problem
نویسندگان
چکیده
An optimal control problem governed by an unilateral obstacle problem is considered. The problem is discretzed by using linear finite elements for the state and the obstacle and a variational discrete approach for the control. Based on strong stationarity and a quadratic growth condition we establish a priori error estimates which turn out to be quasi-optimal under additional assumptions on the data. The theoretical findings are illustrated by two numerical tests.
منابع مشابه
Optimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملFINITE ELEMENT CENTER PREPRINT 2000–12 APosteriori Error Analysis in themaximumnorm for a penalty finite element method for the time- dependent obstacle problem
A Posteriori Error Analysis in the maximum norm for a penalty finite element method for the time-dependent obstacle problem Abstract. We consider nite element approximation of the parabolic obstacle problem. The analysis is based on a penalty formulation of the problem where the penalisation parameter is allowed to vary in space and time. We estimate the penalisation error in terms of the penal...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملA priori error estimates for elliptic optimal control problems with bilinear state equation
In this paper a priori error analysis for the finite element discretization of an optimal control problem governed by an elliptic state equation is considered. The control variable enters the state equation as a coefficient and is subject to pointwise inequality constraints. We derive a priori error estimates for the discretization error in the control variable and confirm our theoretical resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 51 شماره
صفحات -
تاریخ انتشار 2013